Mt Rainier

Mt Rainier
Mt Rainier
Showing posts with label panspermia. Show all posts
Showing posts with label panspermia. Show all posts

Sunday, May 31, 2015

Bacillus Anthracis Issues



The CDC is investigating an unintentional release of anthrax  from the Department of Defense (DOD) to multiple labs in multiple states.  An article from Voice of America indicates 24 labs in 11 states and 2 countries (South Korea and Australia) have received "suspect samples" of concern.

Anthrax has quite a history, both in its naturally occuring state and as a biological weapon, as documented by the Center for Disease Control (CDC).  There have been a number of anthrax "releases" over time,  Recently, in 2014 there was a release at CDC's Roybal Campus .  The year 2001 saw a wave of anthrax attacks.  A CDC review discusses the 2001 attacks in some detail as well as discussing epidemiological findings. and provides a history of anthrax., both in a naturally occurring state and as a biological weapon.

One interesting development has been the appearance of bacillus anthracis in heroin used by European drug users.  The strain involved originated in Turkey, raising a question as to how bacillus anthracis would get into the heroin supply.

The CDC provides basic information on Bacillus Anthracis.  The bacteria Bacillus Anthracis exists in a dormant, sporulated state in nature, can enter the body by a variety of routes (e.g. cutaneous or inhalation pathways), become activated, spread throughout the body, multiply and produce toxins.

These incidents all represent an interesting pattern in the release of bacillus anthracis into the biosphere, taking into consideration emerging environmental issues regarding climate change.  The question is to what extent the environment adapts or reacts to environmental challenges thrown its way.

As this CDC case investigation indicates, it is difficult to investigate individual cases of anthrax when they occur.  Human cases of anthrax are rare, despite the fact that Bacillus Anthracis can be found naturally in the soil and commonly infects domestic and wild animals throughout the world.  There may be a number of reasons for this apparent paradox, which is under investigation.

My blog article "Panspermia and Evolution" discusses Bacillus Anthracis and the distribution of life in the context of extreme environments.  These are the types of situations involving low probability, high impact events.

Bacillus Anthracis is mentioned in a few of my blog articles, "Evolution of Adaptive Immunity" and in an article on "Ebola".

Bacillus Anthracis needs oxygen in order to sporulate.. This is a very interesting characteristic that may provide clues to it's activity, especially in the human body. Iron is a key element in the human body, intimately associated with a number of metabolic processes, including its role in hemoglobin and the delivery of oxygen throughout the body.

Indeed, Bacillus Anthracis uptakes iron when exposed to superoxide stress.   Bacillus anthracis experiences rapid sporulation in a high iron, glucose free environment.  Apparently, Bacillus Anthracis may operate as a signaling mechanism triggering iron accumulation when exposed to environmental stresses, impacting the iron catalyst of the  Fenton reaction.

Transferrin blocks growth of Bacillus Anthracis via iron deprivation, an effect that is differentially expressed in cutaneous anthrax vs inhalational anthrax. This difference, in the latter case, is due to phagocytosis by macrophages, a process which occurs upon inhalation, allowing the inhaled spores to germinate intracellularly, multiply and cause infection.

It is apparent that Bacillus Anthracis forms the heart of a mystery, a challenge, as we seek to better understand the manner in which it expresses, affecting a number of medical processes in the human body. At the same time, we examine other issues impacting society on a global level, issues of climate change, global warming and their interactions with the changing environment in which we live.  These issues will be discussed in further blog articles.

Center for Disease Control (CDC):
  CDC Investigating unintentional DoD shipment of anthrax
  Anthrax
  A History of Anthrax
  CDC Director Releases After-Action Report on Recent Anthrax Incident
  CDC Responds to Anthrax - 2001
  Review of Fall 2001 Anthrax Bioattacks
  Injectional Anthrax in Heroin Users - 2000 -2012
  Anthrax - Basics
  Investigation of Inhalational Anthrax Case - United States

Voice of America -"Carter Vows to Find Those Responsible for Anthrax Shipment"

American Veterinary Medical Association (AVMA) - Anthrax FAQ

marilyndunstan.blogspot.com
   Panspermia and Evolution
   Evolution of Adaptive Immunity
   Ebola

Medical Microbiology - Bacillus
Journal of Bacteriology - Cellular Iron Distribution in Bacillus Anthracis
Journal of Microbiological Methods - Rapid Sporulation of Bacillus Anthracis in a high iron-glucose free media
Journal Biological Chemistry - Human Transferrin Confers Serum Resistance Against Bacillus anthracis

IUPAC - Gold Book - Fenton Reaction

Wikipedia:
  Oxidative Stress
  Phagocytosis
  Macrophage






Monday, October 27, 2014

PANSPERMIA and EVOLUTION


Mars Spirit Lander and Bonneville Crater in Color
 Image Credit: NASA/JPL-Caltech/Univ. of Arizona 

Panspermia  is a concept which portrays how life might be distributed throughout the universe.  These means include a wide variety of astronomical or celestrial objects  including meteors, comets, asteroids, and factors such as the solar wind.  The theory of panspermia, however does not really address how life began in the first place.

As man has ventured out into space, with human space travel, or has used unmanned spaceflight, the issue of man (or machine) as a vector or agent of panspermia has become an issue.  This issue parallels the concept of jet travel and airports as a vector in spreading contagion. Migratory birds have been vectors for centuries, landing in Qinghai Lake, China, a saline and alkaline lake and migratory crossroads  or in the Izembek National Wildlife Refuge in Alaska, along the Bering Sea. . Such bird migratory pathways provide fertile ground for recombination and spread of various contagions.

The NASA photo of the Bonneville Crater and Mars Spirit Lander depicts an impact crater on Mars.  Such an impact would have created a large amount of energy upon impact.  Many theories of life involve the discussion of how reorganization and complexity arises as energy is input into a system.  The Miller and Urey experiment in 1953 attempted to address this issue through recreation of a primordial atmosphere laced with water, methane and lightning storms.
 
Henry Eyring, a chemist, discovered Actual Rate Theory or Transition State Theory, which discusses reaction rates of chemicals in the context of potential energy states, complexes activated by chemical reactions, entropy considerations and products formed by the chemical reaction. In considering the input of exogenous energy into a system, this theory would be important in examining the potential reactions that might take place, as the reaction may change the system through transformational change.

In considering the issue of panspermia, therefore, there are a couple of issues; the development of a system and then the spread of that system.  Issues of energy and mixing concern the development or the boot-strapping of a system through transformational change, while panspermia addresses the spread.  Where panspermia occurs through media that spread via impact, the two issues (bootstrapping and spread) tend to co-exist to some extent.

The concept of panspermia requires a vector that is resilient.  It must be able to adapt to environmental factors such as extremes of temperature, must be able to resist impact as well as radiation and other factors such as high levels of salinity.   Such organisms, extremophiles  fit a profile as a candidate for panspermia.


Santa Catalina Mountains seen from Saguaro National Park, Arizona

Recently, I came across an article in Applied and Environmental Microbiology (AEM) on Bacillus Endospores,  written by Patricia Fajardo-Cavazos and Wayne Nicholson, "Bacillus Endospores Isolated from Granite: Close Molecular Relationships to Globally Distributed Bacillus spp. from Endolithic and Extreme Environments".   This article discusses the issue of the diversity of Bacillus spp. populations, and specifically certain endolithic spore populations obtained from near surface granite from the Santa Catalina mountains near Tucson, Arizona.

An endospore is a tough non-reproductive surface that lies dormant for an extended period of time, and can be later revived after many years to a vegetative state.

Anthrax is a bacillus, and may exist in the dormant state as an endospore.  According to a World Health Organization document on studies of anthrax endospores (bacillus anthracis),  "Sporulation requires the presence of free oxygen. In the natural situation, this means the vegetative cycles occur within the low oxygen environment of the infected host and, within the host, the organism is exclusively in the vegetative form. Once outside the host, sporulation commences upon exposure to the air and the spore forms are essentially the exclusive phase in the environment."  Spores are thus spread by release of spores by the dying host into the environment where they are taken up by another animal.

 The focus of the AEM article is on the very issue of panspermia, the issue of transference of microbes through spaceflight, It concerns the measurement of characteristics of various endolithic spore populations obtained through a variety of near surface granites and basalts and even the ultra clean environments of spacecraft assembly facilities.

Blue fluorescence obtained through medium wavelength UV illumination, distinguished certain endospores obtained from near surface granites.  Endospores were grouped into species or strains based on their rRNA  gene sequences. Numbers and diversity of endospores from granite were greater than those obtained from basalts.  This may be due to the lower porosity of basalt versus granite. Limited subsets of Bacillus spp. appeared to occur in certain rock environments that favored them and not other strains. Certain bacillus strains (bacillus subtilis) were used as proxies for bacillus anthracis fluorescence properties in the study.

The issue of panspermia is a very important one, set in the context of space exploration and in consideration of how extraterrestrial impacts may have impacted (and may still be impacting) human life.  The AEM study provides interesting results as to the diversity and characteristics of Bacillus spp. from a variety of environments, including, importantly, granite, set in the context of fluorescence properties.   A bacillus such as anthrax, as studied by the World Health Organization (WHO) or the CDC may provide clues as to how bacillus and endospores fit into our evolutionary framework.